THERMO-CHEMICAL ACTUATORS FOR EXOSKELETON APPLICATIONS

Phase I SBIR
Sponsored by DARPA/DSO
Contract No. DAAH01-00-C-R032

Presented at DARPA TIM/CHAP Kickoff 26-28 June 2000

Presented by Dodd Stacy Creare Incorporated

Phase I SBIR Program

Objective:

 Demonstrate the Technical Feasibility of Powering an Exoskeleton Load Carriage System with Thermo Chemical Actuators

Scope:

- ExperimentDemonstrate Combustor
- Analysis
 Define Requirements/Size Components/Predict Performance
- Design
 Develop Package/Assess Mass, Volume

Project Schedule

Tasks	Months							
	11/99	12/99	1/00	2/00	3/00	4/00	5/00	6/00
1. Develop Catalytic Combustor								
2. Develop Analytical Models								
3. Design TCA System								
4. Management and Report				♦PR				♦FR

Program Participation

Contractor: Creare Incorporated

Hanover, New Hampshire

Objective: Conduct Phase I SBIR Program

Status: Program to be Completed 2 July 2000

Major Accomplishments, 6/99 - 6/00

- Technical Effort Has Been Completed
- Technical Feasibility of Proposed Concept Has Been Demonstrated
- Regenerator Matrix Fabrication Approach Has Been Proven

Program Findings and Future

- Thermo-Chemical Actuators (2) Can Power an Exoskeleton Load Carriage System of:
 - 100 Kg Capacity, for
 - 24+ Hours (~100 Km) of March, on
 - One 0.5 Kg Hydrocarbon Fuel Canister (e.g. Propane),
 - 10 Kg or Less Total Mass (2 Actuators and Fuel)
- Phase I Results Support Transition to Phase II

 Demonstration of Powered Lower Body Exoskeleton
- Phase II Demonstration Hardware Could Be Evaluated for Transition to Land Warrior Program, Others

Thermo-Chemical Actuator Description

- Regenerative "Hot Air" Engine Cycle
- External Catalytic Combustion
 - Quiet
 - Simple, Low Bandwidth Fuel Control
 - Fuel Flexible
- Cycles at Gait Cadence (2 Hz)
- Linear Output, Demand-Controlled Stroke Amplitude
- Generates 12-14 VDC Power for Internal Use, External Battery Charging

TCA Schematic

THERMO-CHEMICAL ACTUATOR SCHEMATIC

Actuator Design Basis

Actuator Design Basis (continued)

TCA Baseline Design Cycle of Force and Stroke

TCA Control System

- Objective: Vary TCA Mechanical Impedance
 Throughout Gait Cycle to Match the Impedance of the
 Operator's Leg
- Algorithm: Combined Feedforward and Feedback Controllers, Adaptive Determination of Leg Impedance
- Architecture:
 - Inner Analog Loop to Control TCA Impedance
 - Outer Digital Loop to Determine TCA Impedance for Proper Overall Operation

TCA Control System (continued)

- Sensors:
 - Operator Foot Sole Pressure
 - Position
 - Pack Frame Shoulder Strap Tension
- Bandwidth: 20-25 Hz, Limited by TCA Displacer Drive Motor Torque

Actuator Package - 100 Kg Capacity

TCA System Schematic

Exoskeleton System Packaging Concept

Regenerator Matrix Forming

Spacing Dimples in Cured 0.1 mm Micanite

Cured Matrix Sheet Coil

TCA Fuel Consumption

